Christopher Sandford

|Assistant Professor
Academic Appointments

Assistant Professor of Chemistry

Connect with Us

Research in the Sandford group focuses on the development of new synthetic methodologies utilizing homogeneous catalysts. The group exploits new tools in physical organic chemistry to study reaction mechanisms involved in catalysis, which allows them to design new catalysts, optimize their structures, and apply their functions to key challenges in organic chemistry. The study of optimal catalysts in this manner also facilitates the development of new sustainable strategies to forge important chemical bonds.

Contact

603-646-3118
Burke, Room 313
HB 6128

Department(s)

Chemistry

Education

  • MChem Merton College, University of Oxford, 2013
  • PhD University of Bristol, 2017

Selected Publications

  • Hung, C.-T.; Wu, B.-S.; Chou, C.-T.; Sandford, C.; Tsai, C.-C. Insight into Stereocontrol in the Asymmetric Intramolecular Allylation with a tert-Butylsulfinamide Nucleophile: Application in the Synthesis of Chiral Isoindoline-1-Carboxylic Acid Esters. J. Org. Chem. 2023, 88, 613–625.

  • Tang, T.; Sandford, C.; Minteer, S. D.; Sigman, M. S. Analyzing Mechanisms in Co(I) Redox Catalysis Using a Pattern Recognition Platform. Chem. Sci. 2021, 12, 4771–4778.

  • Tsai, C.-C.; Sandford, C.; Wu, T.; Chen, B.; Sigman, M. S.; Toste, F. D. Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angew. Chem. Int. Ed. 2020, 59, 14647–14655.

  • Barman, K.; Edwards, M. A.; Hickey, D. P.; Sandford, C.; Qiu, Y.; Gao, R.; Minteer, S. D.; White, H. S. Electrochemical Reduction of [Ni(Mebpy)3]2+: Elucidation of the Redox Mechanism by Cyclic Voltammetry and Steady-State Voltammetry in Low Ionic Strength Solutions. ChemElectroChem 2020, 7, 1473–1479.

+ View more