Mahima Sneha

|Assistant Professor
Academic Appointments

Assistant Professor

Research in Sneha lab focuses on developing state-of-the-art ultrafast time-resolved vibrational, electronic, and sum frequency generation spectroscopies to unravel the mechanistic, kinetic, and dynamical details of photoinduced chemical reactions in solutions and at interfaces. One research direction in the lab will utilize transient vibrational and electronic spectroscopies to study photocatalyzed reactions in solutions initiated via energy and electron transfer pathways. The second area of research will explore the structure and dynamics of molecular systems at various interfaces, such as air-water and solid-liquid interfaces, using time and phase-resolved vibrational sum frequency generation spectroscopy. These studies covering ultrafast (100 fs) and slow (ms) time scales will allow direct observation of key reaction intermediates and quantify the role of kinetic, structural, and environmental parameters in controlling reaction outcomes.

Contact

HB 6128

Department(s)

Chemistry

Education

  • Integrated MSc NISER India 2012
  • PhD Stanford University 2018
  • Marie Sklodowska-Curie postdoctoral fellow University of Bristol
  • Alexander von Humboldt fellow Ruhr-Universität Bochum

Selected Publications

  • * indicates co-corresponding author; Ϯ indicates co-first author

    20.  Lewis-Borrell, L.; Sneha, M.; Clark, I. P.; Fassano, V.; Noble, A.; Aggarwal, V.; Orr-Ewing, A. J. Mapping the Radical-Induced 1,2-Metallate Rearrangement by Application of Time Resolved Infrared Spectroscopy. J. Am. Chem. Soc. 2021, 143, 41, 17191–17199

    19.  Sneha*, M.; Lewis-Borrell, L.; Bhattacherjee, A.; Clark, I. P.; Orr-Ewing, A. J. Structure-dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. J. Phys. Chem. B 2021, 125, 7840–7854.

    18.  BhattacherjeeϮ *, A.; SnehaϮ *, M.; Lewis-BorrellϮ , L.; Amoruso, G.; Oliver, T. A. A.; Tyler, J.; Clark, I. P.; Orr-Ewing*, A. J. Singlet and Triplet Contributions to the Excited-state Activities of Dihydrophenazine, Phenoxazine and Phenothiazine Organocatalysts used in Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2021, 143, 3613–3627.

    17.  Kao, M.; Venkataraman, R. K.; Sneha, M.; Orr-Ewing, A. J. Influence of the Solvent Environment on the Ultrafast Relaxation Pathways of a Sunscreen Molecule Diethylamino Hydroxybenzoyl Hexyl Benzoate. J. Phys. Chem. A 2021, 125, 636–645.

    16.  Sneha*, M.; Lewis-Borrell, L.; Shchepanovska, D.; Bhattacherjee, A.; Tyler, J.; Orr-Ewing, A. J. Solvent-dependent Photochemical Dynamics of a Phenoxazine-based Photoredox Catalyst. Zeitschrift für Physikalische Chemie 2020, 234, 1475-1494.

    15.  Lewis-Borrellϯ, L.; Snehaϯ, M.; Bhattacherjeeϯ, A.;  Clark, I. P.; Orr-Ewing, A. J. Mapping the Multi-step Mechanism of a Photoredox Catalyzed Atom-transfer Radical Polymerization Reaction by Direct Observation of the Reactive Intermediates. Chem. Sci. 2020, 11, 4475-4481.

    14.  Bhattacherjee, A.; Sneha, M.; Lewis-Borrell, L.; Tau, O.; Clark, I. P.; Orr-Ewing, A. J. Picosecond to Millisecond Tracking of a Photocatalytic Decarboxylation Reaction Reveals the Lifetime of a Reactive Carboxyl Radical in Solution. Nature Comm. 2019, 10, 5152. Editors Focus on Energy Materials

    13.  Hilsabeckϯ, K. I.; Meiserϯ, J.; Snehaϯ , M.; Balakrishnan, N.; Zare, R. N. Photon Catalysis of Deuterium Iodide Photodissociation. Phy. Chem. Chem. Phys. 2019, 21, 14195-14304.

    12.  Hilsabeckϯ, K. I.; Meiserϯ, J.; Snehaϯ , M.; Harrison, J. A.; Zare, R. N. Non-Resonant Photons Catalyse Photodissociation of Phenol. J. Am. Chem. Soc. 2019, 141, 1067-1073.

    11.  Sneha, M.; Dulay, M. T.; Zare, R. N. Introducing Mass Spectrometry to First-Year Undergraduates: Analysis of Caffeine and Other Components in Energy Drinks Using Paper-Spray Mass Spectrometry. Int. J. Mass Spec. 2017, 418, 156-161.

    10.  Sneha, M.; Gao, H.; Zare, R. N.; Jambrina, P. G.; Menéndez, M.; Aoiz, F. J. Multiple Scattering Mechanisms Causing Interference Effects in the Differential Cross Sections of H + D2 → HD(v'=4, j') + D at 3.26 eV Collision Energy. J. Chem. Phys. 2016, 145, 024308.

    9.  Jambrina, P. G.; Aldegunde, J.; Aoiz, F. J.; Sneha, M.; Zare, R. N. Effects of Reagent Rotation on Interferences in the Product Angular Distributions of Chemical Reactions. Chem. Sci. 2016, 7, 642-649.

    8.  Jambrina, P. G.; Herráez-Aguilar, D; Aoiz, F. J.; Sneha, M.; Jankunas, J.; Zare, R. N. Quantum Interference Between H + D2 Quasiclassical Reaction Mechanisms. Nat. Chem. 2015, 7, 661-667. Featured in Chemistry World | Real Clear Science.

    7.  Gao, H.; Sneha, M.; Bouakline, F.; Althorpe, S. C.; Zare, R. N. Differential Cross Sections for the H + D2 → HD(v'=3, j'=4-10) + D Reaction Above the Conical Intersection. J. Phys. Chem. A 2015, 119, 12036-12042.

    6.  Jankunas, J.; Sneha, M.; Zare, R. N.; Bouakline, F.; Althorpe, S. C.; Herraez-Aguilair, D.; Aoiz, F. J. Is the Simplest Chemical Reaction Really So Simple? Proc. Nat. Acad. Sci. (USA) 2014, 111, 15-20.

    5.  Hagen, R. V.; Sneha, M.; Mathur, S. Ink‐jet Printing of Hollow SnO2 Nanospheres for Gas Sensing Applications J. Amer. Ceram. Soc. 2014, 97, 1035-1040.

    4.  Jankunas, J.; Sneha, M.; Zare, R. N.; Bouakline, F.; Althorpe, S. C. Hunt for Geometric Phase Effects in H + HD → HD(v', j') + H. J. Chem Phys. 2013, 139, 144316-1-6.

    3.  Jankunas, J.; Sneha, M.; Zare, R. N.; Bouakline, F.; Althorpe, S. C. Simultaneous Measurement of Reactive and Inelastic Scattering: Differential Cross Section of the H + HD → HD(v′, j′) + H Reaction" Zeitschrift für Physikalische Chemie 2013, 227, 1281-1290.

    2.  Jankunas, J.; Sneha, M.; Zare, R. N.; Bouakline, F.; Althorpe, S. C. Disagreement Between Theory and Experiment Grows with Increasing Rotational Excitation of HD(v', j') Product for the H + D2 Reaction. J. Chem. Phys. 2013, 138, 094310-1-10.

    1.  Karthik, G.; Sneha, M.; Raja, V. P.; Lim, J. M.; Kim, D.; Srinivasan, A.; Chandrashekar, T. K. Core‐Modified meso‐Aryl Hexaphyrins with an Internal Thiophene Bridge: Structure, Aromaticity, and Photodynamics. Chemistry-A European Journal, 2013, 19, 1886-1890.