William D. Leavitt

|Assistant Professor
Academic Appointments
  • Assistant Professor of Earth Science

  • Adjunct Assistant Professor of Chemistry

  • Simons Early Career Investigator in Marine Microbial Ecology and Evolution

Connect with Us

Microbes are central players in Earths’ elemental cycles. Microbial cells, enzymes and reactive intermediates drive the biogeochemical cycles on our planet by supporting the establishment and persistence of chemical gradients, reaction networks and ecosystems. The research in my group centers on experiments designed to reveal the fundamental microbiological and environmental (physicochemical) controls that drive Earths' biogeochemical cycles. Using observations from stable isotope geochemistry, biochemistry and microbial physiology we work to constrain fluxes and transformation rates within a subset of elemental cycles central to life on Earth (C, H, O, N, S, P). To address these challenges we utilize state-of-the art tools — including stable isotope and organic geochemistry, in vitro enzymology, and the continuous cultivation and manipulation of aerobic and anaerobic microbes. Much of our experimental infrastructure is custom designed/built to our applications.  My research involves training and working closely with undergraduate and graduate students as well as postdoctoral scholars and colleagues around the globe. Their recruitment to and involvement in running projects, as well as the preparation of manuscripts and presentations at national and international meetings, is critical to the success of our research.  

+ View more


Fairchild, Room 201
HB 6105


Earth Sciences


  • Ph.D. Earth & Planetary Sciences, Harvard University, 2014
  • A.M. Organismic & Evolutionary Biology, Harvard University, 2009
  • B.A. Natural Science, Hampshire College, 2006
  • Fossett Fellow, Washington University St. Louis 2014-2016
  • Marine Biological Laboratory, Microbial Diversity, 2008

Selected Publications

  • Cobban, A., Zhou#, Y Weber, FJ Elling, A Pearson, WD Leavitt^. 2020. Cyclization of Sulfolobus acidocaldarius GDGTs changes in response to temperature and pH. Environmental Microbiology. doi.org/10.1111/1462-2920.15194

    Luxem&, K., WD Leavitt, X Zhang. 2020. Large hydrogen isotope fractionation distinguish nitrgenase-derived methane from other sources. Applied & Environmental Microbiology. doi.org/10.1128/AEM.00849-20

    Taenzer#, L, J Labidi, A Masterson, X Feng, Rumble III, E Young, WD Leavitt^. 2020. Low apparent. Δ12CH2D2 in microbialgenic methane result from combinatorial isotope effects. Geochimica et Cosmochimica Acta. doi.org/10.1016/j.gca.2020.06.026

    Bertran&, E, A Waldeck&, BA Wing, I Halevy, WD Leavitt, AS Bradley, DT Johnston. 2020. Oxygen isotope effects during microbial sulfate reduction: Applications to sediment cell abundances. Nature ISME. doi.org/10.1038/s41396-020-0618-2

    Taenzer#, L, P Carini, J Gaube, B Bourque%, A Masterson, WD Leavitt^. 2020. Microbial Methane from Methylphosphonate Isotopically Records Source. Geophysical Research Letters. doi.org/10.1029/2019GL085872

    Zhou#, A, Y Weber, B. Chiu, FJ Elling, A. Cobban, A Pearson, WD Leavitt^. 2019. Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius. Environmental Microbiology. doi.org/10.1111/1462-2920.14851

Public Lectures & Fun field trips